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Chapter 3

MATHEMATICS  REVIEW

Before we can do any real physics, we need to establish a common
mathematical language.  The following is designed to do just that.

A.)   Scalars:

1.)  A scalar is a variable that has magnitude (i.e., size) but does not have
direction associated with it.

a.)  Example 1:  Temperature measurements are not recorded as "25o

C upward."  Why?  Because temperature is a scalar, it has a magnitude
but it does not have direction.

b.)  Other examples of scalars:  length, time, mass, and speed.

2.)  Scalars add and subtract just as dollars and cents add and subtract.

a.)  Example 2:  If we know the temperatures T1 = 115o and T2 = 98o,

then T2 - T1 = -17o.

B.)  Vectors:

1.)  A vector is a variable that has both
magnitude and direction associated with it.

a.)  Example:  Force is a vector.  Push a
box up an incline and you will find that the
direction of the force is as important as the
magnitude of the force.  Specifically, the force
required to move the box up the incline in
Case 1 (see Figure 3.1) will be considerably
greater than the force required in Case 2.

Both magnitude and direction are im-
portant with vectors.
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2.)  Because direction makes a difference, vectors do not add or subtract
like scalars.

a.)  Example:  A three
newton force added to a four
newton force will not necessar-
ily sum to an equivalent force
of seven newtons.  Figure 3.2
depicts a situation in which
the vector sum of those two
forces generates an equivalent
force of five newtons at an an-
gle of 37o with the horizontal.

3.)  A vector can be algebraically represented either by a letter with an

arrow over it (  A
→

) or by a letter in bold-face type (A).  The former is most often
used in classroom lectures and when doing problems longhand.  The latter is
used in texts as it is easier to represent on a computer.  This book will use bold-
face letters to represent vectors.

4.)  There will be times when a vector's magnitude is all that is
important.  Notationally, the magnitude of the vector is represented as   A .  On
some occasions, this relatively formal approach is inconvenient.  An alternate
approach uses an unadorned letter like "A" (without the quotes) or a
subscripted letter such as "Ax."

5.)   The graphical representation of a vector is
drawn as an arrow.  The arrow's orientation depicts the
vector's direction and the arrow's length is scaled to
reflect the vector's magnitude.

a.)  Example:  Figure 3.3 depicts a force vector
F whose magnitude is 36 newtons and whose ori-
entation is at 45o with the horizontal.  The scaling
factor in the sketch is one-half inch per 12 newtons.
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6.)  Manipulating vectors, even for relatively mundane operations like
addition or subtraction, requires special approaches.  The two most commonly
used are graphical manipulation and algebraic manipulation.

C.)  Graphical Vector Manipulation:

1.)  Consider the two velocity vectors A
and B  shown in Figure 3.4.  To graphically add
these, proceed as follows:

a.)  Reproduce either vector (we'll
use B), drawing it to scale and keeping
its orientation exactly as presented in
the original sketch (Figure 3.5).

The scale used will be 50 meters per
second per inch.

b.)  Reproduce the second vector
(vector A) so that its tail is positioned at
the head of the first vector (Figure 3.6).
Again, make the drawing to scale and
keep the vector's orientation intact.

c.)  Draw the resultant vector
C=A+B (Figure 3.7).  This new vector
will begin where the sketch began at the
tail of B and end where the sketch ended
at the head of A.

d.)  To determine the magnitude of
the resultant vector C, use a ruler or
centimeter stick to measure C's length,
then multiply by the scaling factor.  In
this case we get approximately 87
newtons.

e.)  To determine C's direction
relative to the horizontal, a protractor
yields approximately 20 degrees.
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Note: Adding more than two vectors
follows a similar pattern with the tail of
each successive vector being placed at the
head of the previous one until all the vectors
are coupled (see Figure 3.8).  Everything
must be drawn to scale with relative
directions kept intact.  The resultant will be
a vector that starts where you started and
ends where you ended.

2.)  Vectors can be multiplied by
scalars as shown in Figures 3.9a through
3.9e below.  Figure 3.9a depicts vector A,
then presents vectors (1/2)A, 2A, -A, and
-2A respectively.

Note:  A vector multiplied by a positive scalar either increases or
decreases the magnitude of the original vector but does not change its
orientation.  Multiplying by -1 effectively flips the vector so that its orientation
is opposite that of the original vector, and multiplying by a negative scalar
changes both the magnitude and the direction.

3.)  Although it has its place, graphical vector manipulation is generally
awkward.  From a mathematical standpoint, it is usually more convenient to
deal with vectors algebraically in the context of coordinate axes.  We will make
use of two such grid systems: one that uses Cartesian coordinates and one that
uses polar coordinates.
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D.)  Algebraic Vector Manipulation--
Polar Notation:

1.)  Polar notation defines a vector by des-
ignating the vector's magnitude   A  and angle θ
relative to the + x axis (see Figure 3.10).  Using
that notation, the vector is written A =  A ∠θ .

Note:  Some math texts use an ordered
paired vector notation like (  A , θ  ) to present polar
information.  As physicists do not usually use this
notation, we will not use it in this book.

a.)  Example 1:  A force vector F with a
magnitude of 12 newtons oriented at 210o

with the +x axis would be characterized as F
= 12 ∠210o (Figure 3.11).

b.)  Example 2:  A force vector F with a
magnitude of 12 newtons oriented along the
-x axis would be characterized as F =
12 ∠180o (Figure 3.12).

2.)  Students should be able to characterize
a graphically presented vector in polar notation.

a.)  Example:  From the graph in Figure
3.13, characterize vectors C and D in polar
notation (Answer: C = 2 ∠30o, D = 4 ∠-50o).

Note:  Negative angles are measured from
the +x axis clockwise.

3.)  Students should be able to  graph a
vector characterized in polar notation.

a.)  Example:  Graph A = 4 ∠150o and B
= 6 ∠-30o (the solution is shown in Figure
3.14 on next page).
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4.)  Multiplying a vector by a positive scalar characterized in polar
notation changes the magnitude of the vector but not the direction (i.e., the
angle).

a.)  Example:  If A = 12 ∠  210o, then 3A = 36 ∠210o.

5.)  Multiplying a vector by (-1) does not change the vector's magnitude,
but it does reverse its direction (see Figure 3.15).  As direction in polar notation

is denoted by the vector's angle, a reversal of direction effectively adds 180o to
the angle.

a.)  Example 1:  If D = 4 ∠  110o, then -D = 4 ∠  290o.

Note:  -D is not -4 ∠  110o.

b.)  Example 2:  If D = 4 ∠  110o, then -(1/2)D = 2 ∠  290o.

Note:  Angles should never be greater than 360o.  If A = 12 ∠  220o, -A =
12 ∠  (220o+180o) = 12 ∠  400o = 12 ∠  40o.
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E.)  Algebraic Manipulation in Cartesian Coordinates:

1.)  An effective if not obscure
system called unit vector notation is used
to denote vectors presented within a
Cartesian (x-y-z) coordinate system.
Within that system, the vector shown in
Figure 3.16 would be characterized as A
= 4i +3j.

As this notation will be new to
many students, the following will
hopefully explain the rationale behind it:

a.)  Consider Figure 3.17.
Graphical addition suggests that
the vector A is equal to the sum of
"a vector in the +x direction whose
magnitude is 4" and "a vector in
the +y direction whose magnitude
is 3."

b.)  We now define a special
vector   ̂i  whose magnitude is
always one and whose direction is
always in the +x direction (Figure
3.18).  Such a vector is called a
unit vector in the +x direction.

Note:  Physics texts that use
arrowheads over vector quantities
replace those arrowheads with a hat
when referring to unit vectors.  To be
technically complete, therefore, a hat has
been included over the "i" term shown
above in Part b.  Although you must use
a hat whenever writing unit vectors out
longhand (you will notice that I always
use a hat in class), this book will assume
that all boldface i, j, and k vectors are
UNIT VECTORS and will not
subsequently include the hat in the text.
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Put another way, when you see a
boldface j in this text, know that it is being
used to denote a unit vector in the y direction
even though it has no hat above it.

c.)  With i as defined above,
notice that 4i is a vector "whose
magnitude is 4 and whose direction
is along the +x axis" (Figure 3.19).
This is half of the vector sum needed
to carry out the vector addition
required for the production of vector
A as denoted in Part a above.

d.)  Now define a unit vector
directed along the +y axis; call it j
(Figure 3.20).

e.)  Notice that 3j is a vector
"whose magnitude is 3 and whose di-
rection is along the +y axis" (Figure
3.21).  This is the other half of the
vector sum needed to carry out the
addition required for the production
of vector A as denoted in Part a.

f.)  Having defined the idea of a
unit vector, the unit vector character-
ization of vector A is A = 4i + 3j
(Figure 3.22).

Note 1:  For three dimensional
situations, the +z direction unit vector is
defined as k.

Note 2:  Consider the vector A = -4k.
Technically, the direction should be associ-
ated with the unit vector k. That is, the for-
mally correct way of characterizing the vec-
tor would be A = 4 (-k).  Unfortunately,
embedded signs can be overlooked, so it is
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acceptable to put the negative sign in front of
the expression as first depicted.

Note 3:  In the vector A = -4i + 3j, the
"-4" part of the expression is called "the x
component of A," or Ax, and the "+3" term is
called "the y component of A," or Ay.
Components are not really magnitudes--they
can be negative.

2.)  Students should be able to
characterize a graphically presented vector,
writing it out in unit vector notation.

a.)  Example:  From the graph in
Figure 3.23, characterize vectors J
and K in unit vector notation (Answer:
J = 2i + 4j and K = 2i - 5j).

3.)  Students should be able to  graph
a vector characterized in unit vector notation.

a.)  Example:  Graph vectors G =
-2i + 3j and H = -3i- 2j (solution
shown in Figure 3.24).

F.)  Conversion: Unit Vector to Polar
Notation:

x

y

A y

xA

A

0

FIGURE 3.25

1.)  Consider the known vector A = Axi + Ayj
shown in Figure 3.25.  To characterize it in the polar
notation, A =   A ∠θ .

a.)  To determine  A :  the right triangle
shown in Figure 3.25 coupled with the
Pythagorean relationship yields a vector
magnitude:
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b.)  To determine θ :  The tangent of θ  is defined as the ratio of the
side opposite θ  (i.e., Ay) divided by the side adjacent (Ax), or tan θ  =

Ay/Ax.  This implies that:

       θ  = tan-1 (Ay/Ax).

Note:  This is expressed as θ , the angle whose tangent is (Ay/Ax).

c.)  Example:  The conversion
of the velocity vector A = (-4i +3j)
m/s  to polar notation (see Figure
3.26):

A =  A ∠θ
    = [Ax

2+ Ay
2] 1/2

                        ∠  [tan-1(Ay/Ax)]

    = [(-4)2 + (3)2] 1/2

 ∠  [tan-1 (3/(-4))]

    = 5 m/s ∠-36.9o.

Note:  There is SOMETHING
WRONG here.  A is a second quadrant
vector, while the angle given by your
calculator implies a fourth quadrant
angle.

The problem lies in your calcula-
tor's inability to tell the difference be-

tween tan-1[3/(-4)]--a second quadrant

vector--and tan-1[(-3)/4]--a fourth
quadrant vector.  As a consequence, all
calculators assume they are dealing
with fourth quadrant values whenever
they are fed tangent arguments that are
negative.  In such cases, the correct
second quadrant angle can be generated
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by adding 180o to the calculator's value (see Figure 3.27 on previous page).
This means A = 5 m/s ∠  (-36.9o+180o) = 5 m/s ∠  143.1o.

Note:  A similar problem exists between first and third quadrant
vectors.  That is, third quadrant vectors have a tangent ratio of (-Ay)/(-Ax), which
is positive just as are first quadrant angles.  All calculators assume that
positive tangents are first quadrant vectors.  Again, 180o must be added to the
calculator-generated angle if that is not the case.

G.)  Conversion: Polar to Unit Vector Notation:

1.)  There are two ways to do this.  One is by
memorizing a formula that always works; the other
is by using your head (ooh, scary).  As you'll
undoubtedly forget the memorized equation sooner
or later, understanding the seat of your pants
approach is important.  I'll outline both.

2.)  Consider the known vector A=   A ∠θ
shown in Figure 3.28.  To characterize it formally (i.e.
in memorizable form) in unit vector notation:

a.)  To determine Ax:  Cosine   ∠θ1 is
defined as the ratio of the side adjacent to θ

A  = 7

0 = 130
o

FIGURE 3.29

(i.e., Ax) divided by the hypotenuse (  A ), or cos θ  = (Ax)/(  A ).  This implies
that Ax =   A  cos θ .

b.)  Similar reasoning produces Ay as
Ay =   A sin θ .

c.)  These expressions will work for any angle
(hence, if memorized, will never fail you . . .
unless your memory fails you).  As an example,
the conversion of  the velocity vector A = 7 m/s
∠ 130o into unit vector notation (Figure 3.29)
becomes:



64

A   = 7 cos 40y
o

FIGURE 3.30

0A   = 7

A   = 7 sin 40x
o

= 4.5

= 5.4

1
2

A

B

y

x

O

0
0

FIGURE 3.31

       A = Axi +Ayj

        = (  A  cosθ ) i +(  A  sin θ ) j

        = [(7 m/s) cos130o] i + [(7 m/s) sin130o] j
        = (-4.5 i + 5.4 j) m/s.

Note:  The only nice thing about the memorized approach is that it
always gives each component's correct sign.

3.)  Assuming your memory is as miserable as
mine, the more intelligent way to do the conversion
outlined above is by the seat of your pants approach.
That is:

a.)  Create a convenient right triangle like
the one shown in Figure 3.30.

b.)  Use the appropriate trig functions to
determine the vector's components.

c.)  Once you have the magnitude of the
components, add signs and you're done (i.e., write
the x component as negative).  Doing so yields A = (-4.5 i + 5.4 j) m/s.

H.)  Dot Product In Polar Notation:

1.)  In polar notation, consider the two
vectors: A =  A   ∠θ1  and B =  B   ∠θ 2 (see Figure
3.31).  The dot product between A and B produces
a scalar quantity.  The magnitude of the scalar
product is defined as:

A . B =  A   B cos φ ,

where φ  is the net angle between the line of the two
vectors.

2.)  Example:  Let A = 5 nt ∠ 30o and  B =
12 m ∠ 180o (see Figure 3.32 on next page).  What
is A . B?
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a.)  Following the definition of
the dot product:

A . B  =   A   B cos θ ,

= (5 nt) (12 m) cos (150o)
= - 52 nt.m.

I.)  Dot Product In Unit
                       Vector Notation:

1.)  In unit vector notation, consider the vectors: A = Axi + Ayj + Azk and B
= Bxi + Byj + Bzk.  The dot product between A and B produces a scalar quantity
that is mathematically equal to:

 A . B = AxBx + AyBy + AzBz.

Note that this is easily derived:

a.)  Beginning with A . B = (Axi + Ayj + Azk) . (Bxi + Byj + Bzk).

b.)  Calling upon the distributive nature of dot products, we get a
whole string of mini dot products:

A . B =  [(Axi) . (Bxi )]  +  [(Axi) . (Byj)] + . . .

c.)  As the angle between two vectors in the i direction is zero
degrees, the first mini dot product shown above is equal to (Ax)(Bx)(cos 0o)

= AxBx.  The implication is that like-termed products will not be zero
(assuming neither Ax nor Bx are zero).

d.)  As the angle between the i direction and the j direction is 90o,
the second mini dot product is equal to (Ax)(By)(cos 90o) = 0.  The
implication is that all cross-termed products will be zero.

e.)  Bottom line:  In unit vector notation, A . B = AxBx + AyBy + AzBz.
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2.)  Example:  Let A = (3i - 4j - 5k) newtons and B = (2i + 7j +3k) meters.
What is A . B ?  Following the derived expression for the dot product expressed
in unit vector notation:

A . B = AxBx + AyBy + AzBz
= (3 nt) (2 m) + (-4 nt) (7 m) + (-5 nt) (3 m)
= -37 nt.m.

J.)  Dot Product In General:

1.)  To understand the physical
significance of the dot product, consider Figure
3.33.  In it, the vector B has been split into two
components--one parallel to the line of A and one
perpendicular to the line of A.  Notice that the
component parallel to the line of A has a
magnitude of   A   B  cos φ .

a.)  Conclusion:  When the dot product
is taken between two vectors, it generates
a quantity equal to the product of:

i.)  The magnitude of one vector
(  A  in this case) and,

B

A

y

x
line-of-B

0

A sin 0
    (component of A
         perpendicular to
                  line-of-B)

FIGURE 3.34

A cos 0
    (component of A
         along line-of-B)

ii.)  The magnitude of the second vector's component that runs
parallel to the first vector (i.e.,  B  cos φ ).

Note 1:  It doesn't matter
whether you take (  A )(  B  cos φ )
or (  A  cos φ )(  B ).  Both will
work.

Note 2:  For the sake of
visualization, if A = 5 nt ∠ 30o

and B = 12 m ∠ 180o, the
component of A along the line of B
is shown in Figure 3.34 and the
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component of B along the
line of A is shown in Figure
3.35.

 2.)  Example of a
situation in which the dot
product comes in handy:
Consider Figure 3.36.

a.)  A force F is
applied to a moving
object as it traverses
over a frictionless

FIGURE 3.36

F
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F sin 0

F cos 0

surface for a distance d.  Notice that
the force will increase the object's
speed.  Notice also that the force
component that makes the object
increase its speed is the component
of F along the line of d, or   F  cosθ .

b.)  As the amount of speed the
object picks up is dependent only
upon the distance over which the
force acts (i.e., the magnitude of the
displacement vector d) and the
component of F along the line of d (i.e.,   F  cos θ ), the product of those
two quantities is deemed important enough to be given a special name--
WORK.

c.)  In short, the work done by the force F acting on an object whose dis-
placement is defined by a distance d is mathematically defined as WF = F . d.

K.)  Cross Product In Polar Notation:

1.)  Consider two vectors A =  A   ∠θ1  and B =  B   ∠θ 2. The cross product
between A and B produces a vector whose magnitude is mathematically defined as:

A . B =  A   B sin φ ,

where φ  is the angle between the two vectors.
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2.)  Example:  Let A = 5 newtons – 30o and B = 12 meters – 180o (look back
at Figure 3.32).  What is     BxA ?

a.)  Following the definition of the magnitude of the cross product:

            BxA = B  A  sin φ ,

           = (12 m)(5 nt) sin (150o)
       =  30 nt.m.

b.)  When dealing with vectors in polar notation, the direction of a
cross product vector can be found using the right-hand rule.  This rule is
outlined below:

i.)  The line of both vectors should be extended until they
intersect (they already intersect in the problem we are examining);

ii.)  With the wrist of the right hand placed at the intersection of
the two vectors, the straightened fingers of the open right hand
should be positioned so that they are parallel to the direction of the
first vector (vector B in this case);

iii.)  The fingers of the right hand should then be curled (waved) in
the direction of the second vector (vector A in this case).  Note that you
may have to flip your hand over to do this.

iv.)  If the thumb of the right hand is held out at a right angle to
the fingers, the direction of the thumb will point in the direction of
the cross product vector.

Note:  Both vectors A and B are in the plane of the paper, whereas the
direction of the right thumb alluded to above will be out of or into that plane.
As peculiar as this may seem now, the direction of a cross product is always
perpendicular to the plane defined by the vectors being crossed.

c.)  In the problem above, your thumb should end up pointing
downward into the page.  Assuming the +i direction is to the right and
the +j direction is upward toward the top of the page, the cross product's
direction will be in the negative z direction characterized by a -k in unit
vector notation.
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Note:  Assuming we are not dealing with an angle of 180o, there are two

angles between any given vectors--one less than 180o and one more than 180o.
The "wave" should always be through the angle less than 180o.

d.)  Putting everything together, we get BxA =  30 nt.m (-k).  Or, if you
do not like having the negative sign embedded in the middle of an
expression, the cross product could be written BxA =  -30 nt.m (k).

Note 1:  There will be times when the two vectors being crossed will not
have a common starting point.  When that occurs, it is very important that you
extend the line of the two vectors until they intersect before trying to execute
the right-hand rule.

Note  2:  An alternate approach to
determining cross product directions:
Position your open right hand so that your
thumb is in the direction of the first vector
(B in this case) and your straightened
fingers are in the direction of the second
vector (you may have to flip your hand
over to accomplish this).  The direction the
palm of your right hand faces (i.e., along a
vector coming out of the palm) will be the
direction of the cross product.  Try it for
the above situation (Figure 3.37) and you
will find that your palm faces downward.

Note 3:  If you are wondering why anyone would want an operation that
takes two x-y plane vectors and produces a third vector whose direction is
perpendicular to the x-y plane, an example is coming in the section CROSS
PRODUCT IN GENERAL.

L.)  Cross Product In Unit Vector Notation:

1.)  In unit vector notation, consider the vectors A = Axi + Ayj + Azk and B
= Bxi + Byj + Bzk.  The cross product between B and A produces a vector the
magnitude and direction of which can be determined by evaluating the following
matrix:
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B x A    = yB Bz

xA

Bx

A y

i j k

=

A z

i [(B   )(A   ) - (B   )(A   )]
    
     + j [(B   )(A   ) - (B   )(A   )]
            
             + k [(B   )(A   ) - (B   )(A   )]

z

x

y y

y

z

z x

x x

z

y .

Note:  Because there are unit vectors directly placed within the matrix,
its evaluation will automatically give you both the magnitude and direction of
the cross product.  You do not have to mess with the right-hand rule when
evaluating cross products in u.v.n.

2.)  To begin with, memorizing the end-result of the cross product matrix
is a bit of a waste of time.  It is much better to simply learn how to evaluate
such a matrix (you will need to know how to do this later when we get to circuit
analysis).  The obvious question is, how do you do that?

3.)  Consider the following example.  Let A = i - 2j + 3k and B = -4i - 5j -
6k.  What is  B x A?

a.)  The matrix requires that you array the unit vectors across the top
row as shown.  The first vector (B in this case) in the cross product has its
components (signs included) placed in the second row of the matrix, and
the second vector has its components placed in the third row.  So:

      

B x A    = -4 -5 -6

3-21

i j k

b.)  There are two ways to proceed from here.  I prefer the approach
that is, in my opinion, the simplest.  To follow that technique, the first
two columns must be reproduced to the right of the matrix as shown
below (the reason for doing this will become evident shortly).

-4 -5 -6

3-21

i j k

-4 -5

-21

i j
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c.)  Once set up, circle the first i unit vector, then cross out the row
and column in which it resides.

-4 -5 -6

3-21

i j k

-4 -5

-21

i j

d.)  The x-component of the cross product will be i (i.e., the unit vector
that is circled) times the evaluation of the 2x2 matrix shown in the
sketch.  Note that the upper left-hand piece of that 2x2 matrix is one
column over, one row down from the circled i).

e.)  To evaluate a 2x2 matrix, take the upper left-hand piece times
the bottom right-hand piece MINUS the upper right-hand piece times
the lower left-hand piece.  In our example, that will be (-5)(3) - (-6)(-2) =
-27.  Once you multiply that by i to get -27i, you have the x component of
the cross product.

f.)  The exact same thing is done with the j column and row (this is
usually overlaid on top of the previous set-up--it isn't likely that you are
going to want to recreate the entire matrix to do the next step).  That is
shown below.

-4 -5 -6

3-21

i j k

-4 -5

-21

i j

g.)  For this part, multiply the circled j times the evaluation of the
2x2 matrix shown in the sketch above (the upper left-hand piece is -6).
The evaluation for this part will be (-6)(1) - (-4)(3) = +6.  Multiplying by
the j yields +6j, and you have the y component of the cross product.

h.)  The z component is taken care of similarly (try it) yielding a final
cross product, unit vectors and all, of:

 B xA = i [(-5)(3) - (-6)(-2)] + j [(-6)(1) - (-4)(3)] + k [(-4)(-2)-(-5)(1)]
 = -27i + 6j + 13k.
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M.)  Cross Product In General:

1.)  To understand the physical significance of the cross product, re-
consider Figure 3.33.

a.)  Vector B has been split into two components--one parallel to the
line of A and one perpendicular to the line of A.  Notice that the
component perpendicular to the line of A has a magnitude of   B  sin φ .

b.)  Evidently, cross products generate a vector whose magnitude is
equal to the product of:

i.)  The magnitude of one of the vectors (  A  in Fig 3.33), and

ii.)  The magnitude of the second-vector's-component that runs
perpendicular to the first vector (  B  sin φ ).

c.)  An example of such a situation follows in Part 3 of this section.

Note:  Again, it makes no
difference whether the magnitude is
obtained by determining (  A )(  B
sin φ ) or (  A  sin φ )(  B ).  A sketch
of the information required to
determine the former is shown in
Figure 1.33, whereas the informa-
tion required to determine the
latter is shown in Figure 3.38.

2.)  The significance of a
cross product's direction depends
upon the situation in which the
cross product is used.  For instance,
a charged particle moving with
velocity v in a magnetic field B will feel a magnetic force F that is proportional
to vxB.  In this case, the direction of the cross product is the direction of the
magnetic force as it is applied to the particle (the apparently odd fact that the
direction of a magnetic force on a moving charged particle is always
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FIGURE 3.39

r

F

F sin 0

F cos 0

wrench
0

perpendicular to the plane defined by the velocity and magnetic field vectors was
deduced experimentally).

Note:  Concerning this "perpendicular-to-the-plane-of-the-two-vectors"
characteristic of cross-product directions, notice that if the vectors being crossed
are in the x-y plane--a situation that will always be the case when working in
polar notation--the cross product direction will be either in the +k or -k direction.

3.)  Example of a situation in
which the cross product comes in handy:
Consider Figure 3.39.

a.)  A force F is applied to a
wrench at a distance r units from
the axis of rotation.  Note that:

i.)  The greater   r , the
less difficult it will be to
rotate the bolt;

ii.)  The greater   F , the
less difficult it will be to rotate the bolt; and

iii.)  The force component that will make the bolt rotate will be the
component perpendicular to the line of r (i.e., F  sin φ ).

b.)  As ease of rotation is related to   r  and ( F  sin φ ), the product of
those two variables is deemed important enough to be given a special
name--torque ( ΓΓ ).  In short, the magnitude of the torque applied by F
about the axis of rotation will be     ΓΓ = rxF .

c.)  Assuming r and F are in the x-y plane, the direction of the cross
product will either be in the +k or -k direction (using the right-hand rule
outlined above, it turns out to be the +k direction).

Note 1:  For straight-line motion, the use of the i, j, and k unit vectors to
denote, say, a velocity's direction, is easy to decipher.  In such a case, they quite
literally tell you the direction in which the body is moving.  Unfortunately, when
dealing with planar rotational motion and the cross products that define them,
the idea of direction is a little more complicated.
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Note 2:  If Part d (below) does not make perfect sense now, don't worry about
it.  All you really need to be able to do at this point is to calculate a cross product
(both magnitude and direction).  The significance of the calculation will become
much more evident when we begin using the math in specific situations.

d.)  Direction of a cross product:

i.)  To begin with, notice that the motion of a spinning object
(we'll assume it is spinning in the x-y plane) does not really go
anywhere--it just sits there spinning.   That means that the direction
of, say, the rotational velocity of the object can have nothing to do with
linear displacement.

ii.)  In fact, direction as related to spinning objects addresses one
question only: Is the rotation clockwise or counterclockwise?

iii.)  As there are no unit vectors defined in the clockwise direction,
a little fancy footwork is required to convey the sense of rotation, using
the unit vector notation we already have at our disposal.

iv.)  The vectors used to identify the torque that started the object
spinning in the first place (i.e., F and r) are in the x-y plane, but no-
tice that the object rotates about a line parallel to the z-axis.

v.)  Physicists and mathematicians traditionally define the
sense-of-rotation by denoting the axis about which the object rotates.

vi.)  If, therefore, a rotation in the x-y plane is clockwise (this kind
of rotation would screw a bolt INTO the x-y plane), the axis of
rotation is along the z axis (inward) and the unit vector assigned to
denote that fact would be -k.

By the same token, if a rotation in the x-y plane is counterclockwise
(i.e., screwing the bolt OUT), the axis of rotation is along the z axis
(outward) and the unit vector assigned to denote that fact would be +k.

vii.)  Using that designation, torques that produce counterclockwise
motion unscrew bolts out of the page and are designated as having a
+k direction.  Torques that produce clockwise motion screw a bolt into
the page and are defined as having a -k direction.
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northward

20 mph

viii.)  In light of all this, it shouldn't be surprising to find that a
torque that makes a bolt rotate, say, clockwise, will have a cross
product whose direction is along the -k axis.  Put another way, when a
torque calculation readings rxF = (3 nt.m)(-k), the -k part of the cross
product tells you that the torque in question has a clockwise sense.

QUESTIONS
3.1)  Is three plus four always equal to seven?  Explain.

3.2)  You’re bored.  You find yourself casually perusing the math book
your parents keep for guests on their living room table ( . . . hey, it could
happen . . . ).  You come across a spectacularly intriguing vector in the
book.  You're not doing much, so you decide to call your friend, Hilda, to
let her know about this amazing vector you’ve just met.  She gets
excited and, being the pushy sort, wants to know more about the vector.
Where's it from?  How big is it?  What's it look like?  There are two
fairly standard ways you could describe your vector so that Hilda could
recreate it for herself.  For each approach, what information would you have to
provide for her to do so?

3.3)  Why is it easy to add vectors in unit vector notation and not generally easy
to add vectors in polar notation?

3.4)   You are flying an airplane.  There is a 20 mph breeze blowing to the
west.  What information do you need to determine the direction you must
nose your plane if its resultant motion is to be directly northward?  With
that information, how could you solve the problem?

river
round trip

100 miles

3.5)  You're in a motorboat.  On flat (stationary) water, the boat's
maximum speed is vo.  The river you are traveling on flows with
speed vo/2.  You have to travel 100 miles up the river and 100 miles
back down to your start position.  If you made the round trip on flat
water, it would take t hours to do the round trip.  On this river, the
round trip will take: (a) the same, (b) more, or (c) less time?  Explain.

3.6)  You are given the dot product and cross product for the same two vectors.  What
clever thing could you do to determine the angle between the vectors?
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3.7)  You are given the cross product between a known vector A and a vector B
whose magnitudes you know but whose direction you don't know.  From this,
what can you tell about the direction of the unknown vector?  Explain.

3.8)  You are told that the cross product between two vectors is zero.  What do
you know about the two vectors?

3.9)  What does the direction of a cross product tell you?

3.10)  What is always true about the direction of a cross product?

3.11)  What does a cross product really do for you?

3.12)  You are told the dot product between two vectors is zero.  What do you
know about the two vectors?

3.13)  What does a dot product really do for you?

3.14)  Why would you laugh in the face (ha ha) of someone who asked what the
direction of a dot product tells you?

3.15)  Can a dot product be negative?  If so, what would a negative dot product
mean?

3.16)  You can dot a vector into the results of a cross product, but you can't cross
a vector into the results of a dot product.  Why not?

3.17)  You decide to convert vector A from unit vector notation to polar notation.
You use your calculator to do the deed and you get a magnitude and an angle.
Are you sure the magnitude and angle you get from your calculator are appro-
priate for the vector you are trying to characterize?

3.18.)  What's wrong with the notation A = -3 ∠ 25o?

3.19)  In converting from polar notation to unit vector notation, the expression A
= A Acos sinθ θ i  j+ , where θ  is the angle between the +x axis and the vector,
works just fine.  What's wrong with using it?

3.20)  Assume you have a vector characterized in unit vector notation.  You
want to create a second vector that is equal to minus that first vector.  How
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would you do that?  If, instead, the original vector had been characterized in
polar notation, how would you do that?

PROBLEMS

3.21)  With some urgency, a newlywed
couple on their honeymoon hires a not-so-bright
boatman to row them across a 100 meter wide
river to their honeymoon hotel.  In calm water, the
boatman (we'll call him Jack the idiot, for reasons
that will become obvious shortly) can row his
dinghy 5 miles per hour.  The river moves at 2
miles per hour.

When sitting directly across from the hotel,
the boatman points his bow at the hotel and
proceeds to row like mad without a second glance.
In blissful ignorance, he, the newlyweds, and the
boat do not move directly across the river but
instead move across and down the river--Jack has not compensated for the
current.  (Landing nowhere close to the hotel, the couple is less than delighted
with Jack's performance, hence tagging him "the idiot.")

a.)  Using graphical manipulation, determine the boat's actual ve-
locity (as a vector) relative to dry land.

b.)  (This one is a stinker--don't spend a lot of time on it).  Changing
the problem slightly, let's assume the boat starts 30 meters down river
from the original starting position (that is, 30 meters below a line drawn
directly across the river to the hotel--see Figure I).  If Jack is clever, he
can point the boat upstream to compensate for the moving water and
make the boat's net movement travel directly toward the hotel.  How
would he have to orient the boat to do so and, as a consequence, how fast
would the boat move relative to dry land?  Again, use graphical means to
determine this!

3.22)  A plane flies 80 miles north, then makes a north-westerly turn
(versus south-westerly turn) at an unknown angle and flies an additional 60
miles.  Upon landing, the pilot realizes she is exactly 30o west of north, relative
to her starting point.
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a.)  Use graphical manipulation to determine the "unknown angle" of
her westerly turn.

b.)  What was her net distance traveled (i.e., her net displacement)?

Note:  Graphical manipulation is only rarely used in physics, but it is
something that is usually included in physics classes for the sake of completeness.

3.23)  Graph the vectors T = 8i -12j and P = 7∠ (-60o).

3.24)  From the graph in Figure II, characterize vectors A and C in unit
vector notation and vectors B and D in polar notation.

3.25)  On the graph shown in Figure II, vectors B
and D are almost the same length.  Why is the
magnitude of B only 1.3 when D's magnitude is around
2.6?

3.26)  Assume: A = -8i +12j
B =  -4i - 3j
C = 5i + 6j -7k
D = 7 ∠  (-60o)
E = 12 ∠  225o

F = 2 ∠  105o.
In the problems below, use the above vectors as

they are denoted above (that is, if asked to do AxB, do so in unit vector notation
if A and B are given in u.v.n.).  With that in mind, determine:

a.)  -(1/3)A; b.)  -6E;
c.)  A + B - C; d.)  E converted to unit vector notation;
e.)  F converted to u.v.n. f.)  A converted to polar
g.)  B converted to polar h.) A.C;
i.)  D.E;   j.)  AxB;
k.) CxB; l.)  DxE.

3.27)  What does A.B really tell you?

3.28)  What does AxB really tell you?


